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Resting-state fMRI

o no task / stimuli
o minimal instructions (“close your eyes, stay awake...”)

Fox & Raichle, 2007
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fMRI signal during eyes-closed rest

(1 movie frame = 2 sec)
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relationship between time series: “functional connectivity”




Introducing resting-state fMRI ...

o Bharat Biswal et al., 1995

Finger-tapping Correlation during
activation resting-state scan

time series during resting-state scan



Resting-state functional connectivity

Default Mode Network

Sensorimotor

Seeley et al. 2007

Raichle et al. 2001

Task-free mapping of functional networks!



Applications aging
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Issues
& Opportunities

o Noise
o Signal origin
o Resting states



Noise



Noise in fMRI

Neuronally-driven BOLD
signal fluctuations
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Thermal noise

Slow drifts (magnet instability; e.g. gradient heating)
Head motion

Physiological processes (respiration, cardiac..)
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Importance of noise reduction for
resting-state fMRI

o Harder to separate signal v. noise (cf. task-based)
* NO model
* no event-locked averaging

AN A

o Operating directly on the noisy time series themselves

corr(x,y)=0.8
corr(x,z)=0.72
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Impact of noise on correlations

Correlated brain activity!

W/\MMWMWMW Neural Network!

o Noise can:
* inflate correlations (false positives; Type [)
* bury true correlations (false negatives; Type Il)



Noise in resting-state fMRI

o Effects are complex, ill-understood
o Noise reduction methods exist, but....

....no universally accepted “correction” pipeline
o Desire principled methods for correction

— understand noise sources
+ tradeoffs of correction methods



Outline

i ] _ respiration belt
o Physiological noise

 Noise sources

« Measurement-based noise
reduction

o Data-driven

 global signal regression pulse oximeter
: (cardiac)

* non-gray-matter regression

« ICA

* band-pass filtering



Cyclic cardiac noise

» pulsatile motion of vasculature

= T, inflow (unsaturated
s blood)

TR = 100 ms

= Mainly affects areas within / bordering CSF &
large vessels

= Daglietal, 1999



Cyclic respiration noise

respiration belt
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= Motion of abdomen during o :
breathing causes shifts in By . requency shif
(dynamic off-resonance) Ao, ]
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Pfeuffer et al, 2002

= Global; most visible in areas
around edges of brain / tissue
compartments




Filtering cyclic noise?
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< Only works if TR is fast enough to avoid aliasing
(which is rarely the case)



Fourier

1 v transform
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RETROICOR
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RETROICOR (Giover et al. 2000)

Pulse
fMRI
(voxel in slice i)
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“BOLD” physiological noise
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Murphy et al., 2013

= BOLD is a function of CMRO,, CBF, CBV

» Breathing and cardiac actiity also alter CBF and CBV
independently of changes in neural activity

* non-neuronal BOLD signal change!
* slow (hemodynamic), T2* contrast, affects gray matter



BOLD physiological noise:
respiratory variations

o variations in breathing

depth and rate g
o alters [CO,] g
—> vasodilation 0 50 100 150 200 250

- alters CBF, CBV
o affects gray matter

Birn et al., 2006

B BOLD signal correlated with RVT

E Rest-state corr - Constant Respirations




Correcting for respiratory variations

Respiration |
(raw)
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corrected

Deep breaths can inflate
resting-state correlations

Seed-based correlation with PCC in successive 1-min intervals




Correcting for respiratory variations

Respiration
(raw) WMMN

100 200 300 400 500 600 700
m W
RVT _ “Respiration
~ response
function”
100 200 300 400 500 ; ‘ |
time [S] 0 10 timio 30
fMRI /
(resting state) | :
100 200 300 400 5 600 700
timelsl RV convolved
with RRF

Birn et al., 2008; Chang et al., 2009



Cardiac rate variations

Cardiac rate

beats per minute
D O ~ o~
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gray matter
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Correcting for cardiac rate variations

= Convert heart beats (R waves) into HR time series

beat-to-beat
sliding window
point process

Heart Rate (Hz)
[ J

Time

Shmueli et al, 2007
= Regress shifted copies - or -

= Convolve with “cardiac response function” to obtain one
nuisance regressor

D CRF(t)

15 i i i i
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deMunck et al, 2008 m# Chang et al, 2009



Impact of ‘BOLD’physiological noise
correction

= on task activation:

RETROICOR only

Y/ \V=y/ \O/ \§

RETROICOR & RVHRcor
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Impact of ‘BOLD’ physiological noise
correction

subject 1

subject 2




Outline

respiration belt

o Physiological noise
* Noise sources

e Measurement-based noise
reduction

_ pulse oximeter
o Data-driven (cardiac)

 global signal regression

* non-gray-matter regression
« ICA

* band-pass filtering



Global signal regression

« Calculate the whole-brain average signal and include as a
nuisance regressor

Sl on i

« Some part of the global signal may be neural

« Mathematically enforces centering of pairwise
correlation distribution (creates negative correls)
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(With Global Signal Regression)
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Murphy et al, 2009
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Saad et al, 2012



Global signal removal: issues

= anti-correlated resting state networks...?

Correlation with PCC ROl - With Global Signal Regression

Jf.» ’7
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Fransson 2005, Fox et al, 2005 Murphy et al, 2009



Non-gray-matter nuisance regressors

» Use signals from white matter, CSF, large vessels,
etc. as nuisance regressors

= assumption: these regions carry no signals of interest,
but perhaps some common noise

white matter ROI “CompCor”: Behzadi et al., 2007

CSF ROI

ANATICOR: Jo et al., 2010 Temporal principal

Eroded WM Time Courses component analysis
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e P PN S e e nelg ththOd arOU nd Extract top N com ponents
g T e S e .
s €ACH gray matter voxel as nuisance regressors
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Spatial ICA

= Decompose 4D (volume x time) fMRI dataset into mixture of fixed

spatial components with time-dependent weights
time t:

B e Ly

Eliminate noisy
components

S Ry raw_data(t) McKeown et al, 1998

Thomas et al, 2002



Spatial ICA

= How to objectively identify noise components?

= Automatic classification based on spatial, temporal,
frequency features (Tohka et al, 2008, De Martino et al, 2007)

= Multi-echo EPI + ICA to identify non-BOLD components
(Kundu et al, 2012)

a) Functional Network Component TE-Dependence
Maps of ICA

Functional Networks

b) Artifact Component

TE-dependent signal change

11 21 31

39 ms component rank by k




Multi-echo ICA denoising

] ME-ICA Coefficient
Conventional / 1-sample T-test Correlation / 1-sample T-test

courtesy Prantik Kundu



Band-pass filtering
“we band-pass filtered our data from 0.008 < f < 0.1 Hz”
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o f>xx Hz (high pass):

= motion drifts, scanner instability (but see also: J.W. Evans
et al. OHBM 2013)

o f<yyHz (low pass):
= may help filter out physiological noise?
» only “cyclic noise”
« onlyif TR is short enough (no aliasing)
= Signal of interest is low (hemodynamics)

« Open question: ‘interesting’ resting-state activity at
higher frequencies??



Resting-state fMRI at 4 Hz

Wednesday, June 19, 2013: 1:30 PM - 3:30 PM

Poster Number:
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On Display:

Wednesday, June 19 & Thursday, June 20

Authors:

Ying-Hua Chul, Shang-Yueh Tsaiz, Jyrki Ahveninen3, Tommi Raij3, Wen-Jui Kuo“, Fa-Hsuan Lin!

Contrary to the prevailing view based on conventional resting-state fMRI studies limited
to very low sampling rates, our results showed significant inter-hemispheric correlations
even at frequencies above 0.1 Hz. Considering the power spectral density of a canonical
hemodynamic response function, our results suggest that at 4 Hz, either the noise and
signal are decreased in parallel, or other physiological signal exists, such that the
contrast-to-noise ratio (quantified by the Z-score of the correlation coefficients) at 4 Hz
is still about 60% of that at 0.1 Hz. While the spatial resolution of Inl is somewhat

{frontiers in ORIGINAL RESEARCH ARTICLE %
puthshed: 01 May 2013
HUMAN NEUROSCIENCE doi: 10.338hum.2013,00168

Beyond noise: using temporal ICA to extract meaningful

information from high-frequency fMRI signal fluctuations

during rest

Roland N. Boubela'?**', Klaudius Kalcher'?*', Wolfgang Huf '%*#, Claudia Kronnerwetter®®,
Peter Filzmoser® and Ewald Moser'?

fluctuations alone. Consequently, the use of bandpass filters in resting-state data analysis
should be reconsidered, since this step eliminates potentially relevant information. Instead,
more specific methods for the elimination of physiological background signals, for example
by regression of physiological noise components, might prove to be viable alternatives.



o Functional connectivity is based on relationships between
fMRI time series of different regions
= Assumption: shared temporal structure

- neural interactions

o But, fMRI time series contains a mixture of neurally
driven BOLD signal and noise (hardware, head
motion, physiological processes ...)

o Must separate “signal” from “noise”



Summary, cont.

O

O

O

O

Two classes of physio noise (cyclic,variations)

Data-driven analyses can complement model-based methods
* model & pattern discovery
=  when monitoring is not available

* {ry to minimize bias (from data: non-gray-matter regressors;
from researcher: objective criteria)

Record physiological data

= option to do physio corrections (now or later...)
» understanding individual/group differences

Physiological noise requires further study!



Reducing physiological noise

respiration belt

o Measurement-based approaches
« RETROICOR (Glover et al, 2000)

« RVTcor/ RVHRCOR (Birn et al 2006,2008,
Chang et al 2009)

o Data-driven approaches (physio + other noise) pulse oximeter
. CompCor (Behzadi et al, 2007) (cardiac)
« PESTICA (Beall et al, 2007)
* |ICA (Thomas et al, 2002)
* Multi-echo ICA (Kundu et al, 2012)

(and more...)



What is the signal?



% BOLD change

| | I
150 200 250 300

Time (sec)
Fox & Raichle, 2007

* noise in the fMRI signal (hardware, physiological, motion)

 fluctuations in intrinsic activity: “ongoing neural and
metabolic activity which is not directly associated with
subjects’ performance of a task”™ (Raichle, 2009)



Understanding intrinsic fluctuations

o underlying neural processes?

= relationship with electrophysiology
o influence on behavior?

» Interaction with tasks, subject responses
o relationship with anatomic connectivity?

= DTI, lesion / patient studies, parcellation



Understanding intrinsic fluctuations

o underlying neural processes?

= relationship with electrophysiology
o influence on behavior?

» Interaction with tasks, subject responses
o relationship with anatomic connectivity?

= DTI, lesion / patient studies, parcellation



Electrical measurements of resting-state activity

o Electrical signals show intrinsic fluctuations and spatio-temporal
organization

i Kenet et al, 2003

o Can try to relate resting-state BOLD & electrophysiological measurements
(EEG, MEG, ECoG, depth electrodes...)

» study events/states associated with BOLD fluctuations
= higher temporal resolution
= electrical (cf. hemodynamic)



Simultaneous EEG-fMRI
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extract EEG-derived time series(power,
phase locking, etc.)

« convolve with HRF

« correlate with BOLD signal time series
at each voxel




Resting-state EEG-fMRI correlations

correlations with alpha-band power fluctuations

beta-2{ -
17-23 Hz N

" positive BN negative

correlations between beta power fluctuations &
fMRI Default Mode Network (Laufs et al, 2003)

also see review article: Laufs, HBM 2008



Resting-state EEG-fMRI correlations?

o Default-mode network reported to
correlate (moderately) with:

o Spectral “profile” rather than unique
signature?

o Techniques under development

Default -mode network

upper beta (Laufs et al, 2003)
alpha & beta (vantini et al, 2007)

frontal theta, inverse (Scheeringa et
al, 2010)

decreased delta & increased beta
(cross-subject) (Hiinka et al. 2010)
alpha (global phase locking)ann et al. 2009)

correlation

Mantini et al. 2007



Simultaneous LFP-fMRI

correlations are
spatially widespread!

Anterior % correlation maps with high gamma power
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ECoG
* invasive (implanted surface and/or depth
electrodes)

* measure electrical activity with high spatial |
and temporal resolution

How well do “networks” of electrical signals
match “networks” of BOLD fMRI?
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Keller et al. 2013

 auditory network (Nir et al, 2008)
« sensorimotor network (He et al. 2008)
« also with slow cortical potential (He et al, 2010)



Understanding intrinsic fluctuations

o underlying neural processes?

= relationship with electrophysiology
o influence on behavior?

» Interaction with tasks, subject responses
o relationship with anatomic connectivity?

= DTI, lesion / patient studies, parcellation



Influence of intrinsic activity on behavioral
response Reviewed in: Sadaghiani et al, 2010

Does pre-stimulus intrinsic activity predict subsequent

response or perception?
A s I**
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Fox et al., 2007
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Relationship with structural connectivity
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Relationship with structural connectivity

Comparison with DTI: correlations between resting-state functional
connectivity & white matter tracts

A : Participant B, 998 ROIs
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Honey et al. 2009

== Functional connection

Greicius et al. 2009



Connectivity-based parcellation

Profrontal Parietal + Occlpltal Motor+ Premotor Somatoaonsory Tomporal
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Variability of connectivity-based
parcellation

Rest Border Overlap Semantic Classification

BRest MSemantic

Krienan et al, OHBM 2013



Resting states



‘Static’ analysis

o One measure of FC per scan

courtesy Zhongming Liu

Dynamic information?
Within-scan variation in
cognitive & vigilance
states



o Static analysis: unexplained variance in FC due to changes
in cognitive & vigilance states

time




‘Dynamic’ analysis

time\

\




° i
. PR -
° _nw.wk_n..-."“
..:”..:-u.h =
.
go) o =
O =
o8y,
oG P =
1 — n O
o0 .E 5
3 5 € ¢
N oN =

k-means
clustering

Allen et al. 2012



Spurious variability

o fMRI contains unknown mixture of neuronally driven
BOLD signal and non-neuronal fluctuations

o Noise can cause spurious FC changes

fMRI time series independent Gaussian
(PCC, dACC) white noise
’gime §erie§ | | | | | time series

sliding-window correlation




Correlates of time-varying BOLD FC

o Relate changes in FC to concurrent measurements
(EEG, physiology, ...)
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Hutchison et al. 2013
(review article)



Influence of vigilance state

Chang et al. 2013



Influence of behavioral/cognitive state

Individual-Subject Level

SRR

5t YO A= in R R e Shirer et al, 2012
i

WINDOW LENGTH =90 Seconds
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180s 180s
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Javier Gonzalez-Castillo



Dynamic analysis methods

o @ s}
o “Dynamic connectivity e e Yo
regression” (Cribben et al.)
| A ) g
: 4 . A
o “Co-activation Patterns” (Xiao Liu) Cribben etal. 2012
A_ o5 pPcc —— mPFC Frame 1 Frame 2

Frame 1

Frame 2

8830090 06082

_ . _ Liu & Duyn 2013
o many others... active future direction
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o Jeff Duyn & AMRI group
o Gary Glover

o Dan Handwerker

o Jennifer Evans

o Zhongming Liu



